A fuzzy hybrid logic and opinion dynamics in social networks

Jens Ulrik Hansen
Department of Philosophy,
Lund University, Sweden

Modality and Modalities
May 22–24, 2014, Lund
Social networks
Social networks

Facebook and Twitter
Social networks

Facebook and Twitter

Physical interaction
Social networks

Facebook and Twitter

Physical interaction

Co-authorship
Social networks

Dynamic processes in social networks

Facebook and Twitter
Physical interaction
Co-authorship
Social networks

Diffusion of innovation

Physical interaction

Co-authorship

Facebook and Twitter

Dynamic processes in social networks
Social networks

Diffusion of innovation
Physical interaction
Co-authorship
Facebook and Twitter
Epidemics

Dynamic processes in social networks
Social networks

Diffusion of innovation
Physical interaction
Co-authorship
Opinion dynamics
Facebook and Twitter
Epidemics

Dynamic processes in social networks
Modal logic and social networks

- Social networks are (directed or undirected) graphs
- Modal and hybrid logic (in an egocentric reading) to describe network structures
- The dynamics are often local dynamics
- A dynamic modal logic where preconditions are described by modal formulas
Modal logic and social networks

- Social networks are (directed or undirected) graphs

- Modal and hybrid logic (in an egocentric reading) to describe network structures

- The dynamics are often local dynamics

- A dynamic modal logic where preconditions are described by modal formulas
Modal logic and social networks

- Social networks are (directed or undirected) graphs

- Modal and hybrid logic (in an egocentric reading) to describe network structures

- The dynamics are often local dynamics

- A dynamic modal logic where preconditions are described by modal formulas
Modal logic and social networks

– Social networks are (directed or undirected) graphs

– Modal and hybrid logic (in an egocentric reading) to describe network structures

– The dynamics are often local dynamics

– A dynamic modal logic where preconditions are described by modal formulas
Modal logic and social networks

– Social networks are (directed or undirected) graphs

– Modal and hybrid logic (in an egocentric reading) to describe network structures

– The dynamics are often local dynamics

– A dynamic modal logic where preconditions are described by modal formulas
Opinion dynamics in social networks

Examples
- Deliberation in groups, such as juries or boards of directors
- Public opinion on matters such as global warming or surveillance of private citizen
- Twitter storms

Simple models of opinion dynamics
- Morris DeGroot
- Keith Lehrer and Carl Wagner
Opinion dynamics in social networks

Examples

- Deliberation in groups, such as juries or boards of directors
- Public opinion on matters such as global warming or surveillance of private citizen
- Twitter storms

Simple models of opinion dynamics

- Morris DeGroot
- Keith Lehrer and Carl Wagner
Opinion dynamics in social networks

Examples
- Deliberation in groups, such as juries or boards of directors
- Public opinion on matters such as global warming or surveillance of private citizens
- Twitter storms

Simple models of opinion dynamics
- Morris DeGroot
- Keith Lehrer and Carl Wagner
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
DeGroot and Lehrer’s model of opinion dynamics

- A model independently developed by DeGroot (1974) and Lehrer (1976)
- A group of k individuals
- Each with an opinion $O_i \in [0, 1]$
- The question is how to aggregate these opinions into a joint opinion – a group consensus?
- One solution, a weighted average: $\sum_{i=1}^{k} w_i O_i$
- The question then is how to choose the weights w_i?
- Through a process of deliberation/communication
- Initially each i assigns a weight w_{ij} to the opinion of each j (s.t. $\sum_{j=1}^{k} w_{ij} = 1$) – a kind of trust
- Then, each i update her opinion as an weighted average (using the w'_{ij}s): $O_i(\text{new}) = \sum_{j=1}^{k} w_{ij} O_j$.
DeGroot and Lehrer’s model of opinion dynamics

- A model independently developed by DeGroot (1974) and Lehrer (1976)
- A group of k individuals
- Each with an opinion $O_i \in [0, 1]$
- The question is how to aggregate these opinions into a joint opinion – a group consensus?
- One solution, a weighted average: $\sum_{i=1}^{k} w_i O_i$
- The question then is how to choose the weights w_i?
 - Through a process of deliberation/communication
 - Initially each i assigns a weight w_{ij} to the opinion of each j (s.t. $\sum_{j=1}^{k} w_{ij} = 1$) – a kind of trust
 - Then, each i update her opinion as an weighted average (using the $w_{ij}'s$): $O_i(\text{new}) = \sum_{j=1}^{k} w_{ij} O_j$.
A model independently developed by DeGroot (1974) and Lehrer (1976)

A group of k individuals

Each with an opinion $O_i \in [0, 1]$

The question is how to aggregate these opinions into a joint opinion – a group consensus?

One solution, a weighted average: $\sum_{i=1}^{k} w_i O_i$

The question then is how to choose the weights w_i?

Through a process of deliberation/communication

Initially each i assigns a weight w_{ij} to the opinion of each j (s.t. $\sum_{j=1}^{k} w_{ij} = 1$) – a kind of trust

Then, each i update her opinion as an weighted average (using the $w_{ij}'s$): $O_i(\text{new}) = \sum_{j=1}^{k} w_{ij} O_j$.
DeGroot and Lehrer’s model of opinion dynamics

- A model independently developed by DeGroot (1974) and Lehrer (1976)
- A group of k individuals
- Each with an opinion $O_i \in [0, 1]$
- The question is how to aggregate these opinions into a joint opinion – a group consensus?
- One solution, a weighted average: $\sum_{i=1}^{k} w_i O_i$
- The question then is how to choose the weights w_i?
- Through a process of deliberation/communication
- Initially each i assigns a weight w_{ij} to the opinion of each j (s.t. $\sum_{j=1}^{k} w_{ij} = 1$) – a kind of trust
- Then, each i update her opinion as an weighted average (using the $w_{ij}'s$): $O_i(new) = \sum_{j=1}^{k} w_{ij} O_j$.
DeGroot and Lehrer’s model of opinion dynamics
DeGroot and Lehrer’s model of opinion dynamics

A fuzzy hybrid logic and opinion dynamics in social networks
DeGroot and Lehrer’s model of opinion dynamics

- This updating can proceed until a consensus is reached.
- Let $O_{i,n}$ be the opinion of i at time step n.

Then, the general updating rule is: $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n-1}$

A consensus is reached if for some n:

$O_{i,n} = O_{i,n+1} = O_{j,n} = O_{j,n+1}$ for all i and j, or

$\lim_{n \to \infty} O_{i,n} = \lim_{n \to \infty} O_{j,n}$ for all i and j

The update rule in matrix notation:

$O_n = WO_{n-1} = W^n O_0$

where O is the $k \times 1$ column vector of the $O'_{i,n}$s and W is the $k \times k$ matrix with entries (w_{ij})

This is essentially a Markov chain

Using results from Markov chain theory, DeGroot showed that consensus is reached iff the directed network given by the links w_{ij} with $w_{ij} > 0$, is strongly connected and aperiodic.
This updating can proceed until a consensus is reached.

Let \(O_{i,n} \) be the opinion of \(i \) at time step \(n \).

Then, the general updating rule is:

\[
O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n-1}
\]

A consensus is reached if for some \(n \):

\[
O_{i,n} = O_{i,n+1} = O_{j,n} = O_{j,n+1} \text{ for all } i \text{ and } j, \text{ or}
\]

\[
\lim_{n \to \infty} O_{i,n} = \lim_{n \to \infty} O_{j,n} \text{ for all } i \text{ and } j
\]

The update rule in matrix notation:

\[
O_n = W O_{n-1} = W^n O_0
\]

where \(O \) is the \(k \times 1 \) column vector of the \(O'_{i,n} \)s and \(W \) is the \(k \times k \) matrix with entries \((w_{ij})\).

This is essentially a Markov chain.

Using results from Markov chain theory, DeGroot showed that consensus is reached iff the directed network given by the links \(w_{ij} \text{ with } w_{ij} > 0 \), is strongly connected and aperiodic.
DeGroot and Lehrer’s model of opinion dynamics

- This updating can proceed until a consensus is reached.
- Let $O_{i,n}$ be the opinion of i at time step n.
- Then, the general updating rule is: $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n-1}$
- A consensus is reached if for some n:
 $O_{i,n} = O_{i,n+1} = O_{j,n} = O_{j,n+1}$ for all i and j, or
 $\lim_{n \to \infty} O_{i,n} = \lim_{n \to \infty} O_{j,n}$ for all i and j
- The update rule in matrix notation: $O_n = W O_{n-1} = W^n O_0$
- where O is the $k \times 1$ column vector of the $O_{i,n}'s$ and W is the
 $k \times k$ matrix with entries (w_{ij})
- This is essentially a Markov chain
- Using results from Markov chain theory, DeGroot showed that
 consensus is reached iff the directed network given by the links
 w_{ij} with $w_{ij} > 0$, is strongly connected and aperiodic.
This updating can proceed until a consensus is reached.

Let $O_{i,n}$ be the opinion of i at time step n.

Then, the general updating rule is: $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n-1}$

A consensus is reached if for some n:

$O_{i,n} = O_{i,n+1} = O_{j,n} = O_{j,n+1}$ for all i and j, or

$\lim_{n \to \infty} O_{i,n} = \lim_{n \to \infty} O_{j,n}$ for all i and j

The update rule in matrix notation: $O_n = W O_{n-1} = W^n O_0$

where O is the $k \times 1$ column vector of the $O'_{i,n}$s and W is the $k \times k$ matrix with entries (w_{ij})

This is essentially a Markov chain

Using results from Markov chain theory, DeGroot showed that consensus is reached iff the directed network given by the links w_{ij} with $w_{ij} > 0$, is strongly connected and aperiodic.
This updating can proceed until a consensus is reached.

Let $O_{i,n}$ be the opinion of i at time step n.

Then, the general updating rule is: $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n-1}$

A consensus is reached if for some n:

$O_{i,n} = O_{i,n+1} = O_{j,n} = O_{j,n+1}$ for all i and j, or

$\lim_{n \to \infty} O_{i,n} = \lim_{n \to \infty} O_{j,n}$ for all i and j

The update rule in matrix notation: $O_n = W O_{n-1} = W^n O_0$

where O is the $k \times 1$ column vector of the $O'_{i,n}$s and W is the $k \times k$ matrix with entries (w_{ij})

This is essential a Markov chain

Using results from Markov chain theory, DeGroot showed that consensus is reached iff the directed network given by the links w_{ij} with $w_{ij} > 0$, is strongly connected and aperiodic.
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
A fuzzy hybrid logic

The basic idea

- The initial state of the DeGroot model is a weighted graph
- There is one propositional variable O that is assigned a value in $[0, 1]$ at each agent in the network ("in each possible world")
- The "accessibility relation" is many-valued from $[0, 1]$ as well
- This naturally leads to a many-valued modal logic in the line of Fitting (1992a,b)
- Taking "+" as join and "·" as meet, the averaging at each step $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n}$ is join of meets – the semantics of the ◊ modality of Fitting (1992a,b)
- However, this doesn’t quite work...
The basic idea

- The initial state of the DeGroot model is a weighted graph.
- There is one propositional variable O that is assigned a value in $[0, 1]$ at each agent in the network ("in each possible world").
- The "accessibility relation" is many-valued from $[0, 1]$ as well.
- Taking "+" as join and "·" as meet, the averaging at each step $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n}$ is join of meets – the semantics of the \Diamond modality of Fitting (1992a,b).
- However, this doesn’t quite work...
The basic idea

- The initial state of the DeGroot model is a weighted graph.
- There is one propositional variable O that is assigned a value in $[0, 1]$ at each agent in the network ("in each possible world")
- The "accessibility relation" is many-valued from $[0, 1]$ as well.
- This naturally leads to a many-valued modal logic in the line of Fitting (1992a,b).
- Taking "+" as join and "·" as meet, the averaging at each step $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n}$ is join of meets – the semantics of the \diamond modality of Fitting (1992a,b).
- However, this doesn’t quite work...
The basic idea

- The initial state of the DeGroot model is a weighted graph.
- There is one propositional variable O that is assigned a value in $[0, 1]$ at each agent in the network ("in each possible world").
- The "accessibility relation" is many-valued from $[0, 1]$ as well.
- This naturally leads to a many-valued modal logic in the line of Fitting (1992a,b).
- Taking "+" as join and "·" as meet, the averaging at each step $O_{i,n} = \sum_{j=1}^{k} w_{ij} O_{j,n}$ is join of meets – the semantics of the ♦ modality of Fitting (1992a,b).
- However, this doesn’t quite work...
A fuzzy hybrid logic

Definition (Syntax)

The static language \mathcal{L}_S is defined in the following way:

$$\varphi ::= P \mid i \mid (\varphi \leq q) \mid (\varphi \geq q) \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \rightarrow \varphi) \mid \diamond \varphi \mid \circ_i \varphi \mid E \varphi \mid [P := \varphi] \varphi \mid [P := \varphi]^* \varphi,$$

where $p \in \text{PROP}$ (prop. var.), $i \in \text{NOM}$ (nominal), and $q \in [0, 1] \cap \mathbb{Q}$.
A fuzzy hybrid logic and opinion dynamics in social networks

Definition (Network model)

A network model is a tuple $\mathcal{M} = \langle A, R, g, V \rangle$, where A is a non-empty set of individuals/agents, $R : A \times A \rightarrow [0, 1]$ a trust distribution such that for all $a \in A$, $\sum_{b \in A} R(a, b) = 1$, $g : \text{NOM} \rightarrow A$ is a naming function assigning agents to each nominal, and $V : A \times \text{PROP} \rightarrow [0, 1]$ is a valuation assigning truth values for each agent to each propositional variable.
Definition (Semantics)

Given a model $\mathcal{M} = \langle A, R, g, V \rangle$, we extend V to \bar{V}, for all agents $a \in A$ and all formulas $\varphi \in \mathcal{L}_S$, by the following inductive clauses:

- $\bar{V}(a, P) = V(a, P)$
- $\bar{V}(a, i) = \begin{cases} 1 & \text{if } a = g(i) \\ 0 & \text{otherwise} \end{cases}$
- $\bar{V}(a, \varphi \leq q) = \begin{cases} 1 & \text{if } \bar{V}(a, \varphi) \leq q \\ 0 & \text{otherwise} \end{cases}$
- $\bar{V}(a, \neg \varphi) = 1 - \bar{V}(a, \varphi)$
- $\bar{V}(a, \varphi \land \psi) = \max\{0, \bar{V}(a, \varphi) + \bar{V}(a, \psi) - 1\}$
- $\bar{V}(a, \varphi \rightarrow \psi) = \min\{1, 1 - \bar{V}(a, \varphi) + \bar{V}(a, \psi)\}$
- $\bar{V}(a, \Diamond \varphi) = \sum_{b \in A} R(a, b) \bar{V}(b, \varphi)$
- $\bar{V}(a, \Diamond_i \varphi) = \bar{V}(g(i), \varphi)$
- $\bar{V}(a, E \varphi) = \sup\{\bar{V}(b, \varphi) \mid b \in A\}$
A fuzzy hybrid logic

Definition (Semantics)

Given a model $\mathcal{M} = \langle A, R, g, V \rangle$, we extend V to \tilde{V}, for all agents $a \in A$ and all formulas $\varphi \in \mathcal{L}_S$, by the following inductive clauses:

\[
\begin{align*}
\tilde{V}(a, P) &= V(a, P) \\
\tilde{V}(a, i) &= \begin{cases} 1 & \text{if } a = g(i) \\ 0 & \text{otherwise} \end{cases} \\
\tilde{V}(a, \varphi \leq q) &= \begin{cases} 1 & \text{if } \tilde{V}(a, \varphi) \leq q \\ 0 & \text{otherwise} \end{cases} \\
\tilde{V}(a, \neg \varphi) &= 1 - \tilde{V}(a, \varphi) \\
\tilde{V}(a, \varphi \land \psi) &= \max \{0, \tilde{V}(a, \varphi) + \tilde{V}(a, \psi) - 1\} \\
\tilde{V}(a, \varphi \rightarrow \psi) &= \min \{1, 1 - \tilde{V}(a, \varphi) + \tilde{V}(a, \psi)\} \\
\tilde{V}(a, \Diamond \varphi) &= \sum_{b \in A} R(a, b) \tilde{V}(b, \varphi) \\
\tilde{V}(a, @i \varphi) &= \tilde{V}(g(i), \varphi) \\
\tilde{V}(a, E \varphi) &= \sup \{\tilde{V}(b, \varphi) \mid b \in A\}
\end{align*}
\]
Definition (Semantics (continued))

Given a model $\mathcal{M} = \langle A, R, g, V \rangle$, we extend V to \tilde{V}, for all agents $a \in A$ and all formulas $\varphi \in \mathcal{L}_S$, by the following inductive clauses:

$$\tilde{V}(a, [P := \varphi]\psi) = \tilde{V}_{P:=\varphi}(a, \psi)$$

$$\tilde{V}(a, [P := \Diamond \varphi]^*\psi) = \sup\{\tilde{V}(a, [P := \Diamond \varphi]^n\psi) \mid n \in \mathbb{N}\}$$

Definition (Updated network models)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a $\varphi \in \mathcal{L}_D$, we let the updated model $\mathcal{M}_{P:=\varphi}$ be $\langle A, R, g, V_{P:=\varphi} \rangle$, where

$$V_{P:=\varphi}(a, Q) = V(a, Q), \quad \text{for all } Q \in \text{PROP}\backslash\{P\} \text{ and all } a \in A$$

$$V_{P:=\varphi}(a, P) = \tilde{V}(a, \varphi), \quad \text{for all } a \in A$$

Definition (Validity)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a formula φ, φ is valid in \mathcal{M} iff $V(a, \varphi) = 1$ for all $a \in A$.
Definition (Semantics (continued))

Given a model $\mathcal{M} = \langle A, R, g, V \rangle$, we extend V to \tilde{V}, for all agents $a \in A$ and all formulas $\varphi \in \mathcal{L}_S$, by the following inductive clauses:

\[
\begin{align*}
\tilde{V}(a, [P := \varphi]\psi) & = \tilde{V}_{P := \varphi}(a, \psi) \\
\tilde{V}(a, [P := \Diamond\varphi]^* \psi) & = \sup \{\tilde{V}(a, [P := \Diamond\varphi]^n \psi) \mid n \in \mathbb{N}\}
\end{align*}
\]

Definition (Updated network models)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a $\varphi \in \mathcal{L}_D$, we let the updated model $\mathcal{M}_{P := \varphi}$ be $\langle A, R, g, V_{P := \varphi} \rangle$, where

\[
\begin{align*}
V_{P := \varphi}(a, Q) & = V(a, Q), \text{ for all } Q \in \text{PROP}\setminus\{P\} \text{ and all } a \in A \\
V_{P := \varphi}(a, P) & = \tilde{V}(a, \varphi), \text{ for all } a \in A
\end{align*}
\]

Definition (Validity)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a formula φ, φ is valid in \mathcal{M} iff $V(a, \varphi) = 1$ for all $a \in A$.

Jens Ulrik Hansen

A fuzzy hybrid logic and opinion dynamics in social networks
Definition (Semantics (continued))

Given a model $\mathcal{M} = \langle A, R, g, V \rangle$, we extend V to \tilde{V}, for all agents $a \in A$ and all formulas $\varphi \in \mathcal{L}_S$, by the following inductive clauses:

\[
\tilde{V}(a, [P := \varphi] \psi) = \tilde{V}_{P := \varphi}(a, \psi)
\]

\[
\tilde{V}(a, [P := \Diamond \varphi]^* \psi) = \sup\{\tilde{V}(a, [P := \Diamond \varphi]^n \psi) \mid n \in \mathbb{N}\}
\]

Definition (Updated network models)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a $\varphi \in \mathcal{L}_D$, we let the updated model $\mathcal{M}_{P := \varphi}$ be $\langle A, R, g, V_{P := \varphi} \rangle$, where

\[
V_{P := \varphi}(a, Q) = V(a, Q) , \text{ for all } Q \in \text{PROP} \setminus \{P\} \text{ and all } a \in A
\]

\[
V_{P := \varphi}(a, P) = \tilde{V}(a, \varphi) , \text{ for all } a \in A
\]

Definition (Validity)

For a model $\mathcal{M} = \langle A, R, g, V \rangle$, a $P \in \text{PROP}$, and a formula φ, φ is valid in \mathcal{M} iff $V(a, \varphi) = 1$ for all $a \in A$.

Jens Ulrik Hansen

A fuzzy hybrid logic and opinion dynamics in social networks
Properties of the logic

- $\bar{V}(a, \neg\Diamond\neg\varphi) = \bar{V}(a, \Diamond\varphi)$

- $\bar{V}(a, U\varphi) = \inf\{\bar{V}(b, \varphi) \mid b \in A\}$ \hspace{1cm} (\(U\varphi := \neg\neg\varphi\))

- $\bar{V}(a, \varphi \rightarrow \psi) = 1$ \text{ iff } $\bar{V}(a, \varphi) \leq \bar{V}(a, \psi)$

- $\bar{V}(a, \varphi \leq q) = 1$ \text{ iff } $\bar{V}(a, \varphi) \leq q$

- $\bar{V}(a, \varphi = q) = 1$ \text{ iff } $\bar{V}(a, \varphi) = q$

- $\bar{V}(a, @iP) = V(g(i), P)$

- $\bar{V}(a, @i\Diamond j) = R(g(i), g(j))$
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
DeGroot and Lehrer’s model of opinion dynamics

A fuzzy hybrid logic

Reasoning about opinion dynamics in social networks

Concluding remarks and future research
Formalizing DeGroot’s model

- Let A be the set of individuals making up the group
- Let P be the proposition that the agents have opinions about (i.e. $PROP = \{P\}$)
- The initial opinion of agent a towards P is $V(a, P)$
- $R(a, b)$ is w_{ab}, i.e. the weight that agent a puts on the opinion of agent b
- Choose any function $g : NOM \rightarrow A$ and set NOM

DeGroot’s updating mechanism corresponds to a substitution of P by $\Diamond P$.

- I.e. an application of the modality $[P := \Diamond P]$
- φ is true after 7 steps of the DeGroot dynamics: $[P := \Diamond P]^7 \varphi$
- That the agents is a consensus of assigning q to P: $(UP) = q$
- The agents are in a consensus: $EP \rightarrow UP$
Formalizing DeGroot’s model

- Let A be the set of individuals making up the group.
- Let P be the proposition that the agents have opinions about (i.e. $\text{PROP} = \{P\}$).
- The initial opinion of agent a towards P is $V(a, P)$.
- $R(a, b)$ is w_{ab}, i.e. the weight that agent a puts on the opinion of agent b.
- Choose any function $g : \text{NOM} \rightarrow A$ and set NOM.
- DeGroot’s updating mechanism corresponds to a substitution of P by $\Diamond P$.
- I.e. an application of the modality $[P := \Diamond P]$.
- φ is true after 7 steps of the DeGroot dynamics: $[P := \Diamond P]^7 \varphi$.
- That the agents is a consensus of assigning q to P: $(\text{UP}) = q$.
- The agents are in a consensus: $\text{EP} \rightarrow \text{UP}$.
Formalizing DeGroot’s model

- Let A be the set of individuals making up the group
- Let P be the proposition that the agents have opinions about (i.e. $\text{PROP} = \{P\}$)
- The initial opinion of agent a towards P is $V(a, P)$
- $R(a, b)$ is w_{ab}, i.e. the weight that agent a puts on the opinion of agent b
- Choose any function $g : \text{NOM} \rightarrow A$ and set NOM
- DeGroot’s updating mechanism corresponds to a substitution of P by $\Diamond P$.
 - I.e. an application of the modality $[P ::= \Diamond P]
 - φ is true after 7 steps of the DeGroot dynamics: $[P ::= \Diamond P]^7 \varphi$
 - That the agents is a consensus of assigning q to P: $(UP) = q$.
 - The agents are in a consensus: $EP \rightarrow UP$
Formalizing DeGroot’s model

- The agents are in a consensus: $EP \rightarrow UP$
- If consensus is reached after a finite number of steps n, then
 $\bar{V}(a, [P := \Diamond P]^*(EP \rightarrow UP)) = 1$.
- However, the other doesn’t quite work
- Moreover, it does not guarantees convergence to a consensus

Theorem

Given a network model M. Then, a consensus is reached in M under the DeGroot dynamics (i.e. successive updates with $[P := \Diamond P]$), if and only if, the formula

$[P := \Diamond P]^*(P := \Diamond P)^*(EP \rightarrow UP)$

is valid in M.

The proof uses that: $\bar{V}(a, [P := \Diamond P]^*(P := \Diamond P)^*(EP \rightarrow UP)) = \lim \inf_{n \to \infty} \bar{V}(a, [P := \Diamond P]^n(EP \rightarrow UP))$

- properties in the limit can be expressed as: $[P := \Diamond P]^*(P := \Diamond P)^* \varphi$
Formalizing DeGroot’s model

- The agents are in a consensus: $EP \rightarrow UP$
- If consensus is reached after a finite number of steps n, then
 $\bar{V}(a, [P := \Diamond P]^*(EP \rightarrow UP)) = 1$.
- However, the other doesn’t quite work
- Moreover, it does not guarantees convergence to a consensus

Theorem

Given a network model M. Then, a consensus is reached in M under the DeGroot dynamics (i.e. successive updates with $[P := \Diamond P]$), if and only if, the formula

$$[P := \Diamond P]^*\langle P := \Diamond P\rangle^*(EP \rightarrow UP)$$

is valid in M.

The proof uses that: $\bar{V}(a, [P := \Diamond P]^*(P := \Diamond P)^*(EP \rightarrow UP)) = \lim\inf_{n \to \infty} \bar{V}(a, [P := \Diamond P]^n(EP \rightarrow UP))$

- properties in the limit can be expressed as: $[P := \Diamond P]^*\langle P := \Diamond P\rangle^*\varphi$
Formalizing DeGroot’s model

- The agents are in a consensus: $EP \rightarrow UP$
- If consensus is reached after a finite number of steps n, then $\bar{V}(a, [P := \Diamond P]* (EP \rightarrow UP)) = 1$.
- However, the other doesn’t quite work
- Moreover, it does not guarantees convergence to a consensus

Theorem

Given a network model \mathcal{M}. Then, a consensus is reached in \mathcal{M} under the DeGroot dynamics (i.e. successive updates with $[P := \Diamond P]$), if and only if, the formula $[P := \Diamond P]\langle P := \Diamond P\rangle* (EP \rightarrow UP)$ is valid in \mathcal{M}.*

The proof uses that: $\bar{V}(a, [P := \Diamond P]*\langle P := \Diamond P\rangle* (EP \rightarrow UP)) = \lim \inf_{n \to \infty} \bar{V}(a, [P := \Diamond P]^n(EP \rightarrow UP))$

- properties in the limit can be expressed as: $[P := \Diamond P]*\langle P := \Diamond P\rangle* \varphi$
Formalizing DeGroot’s model

- The agents are in a consensus: \(EP \rightarrow UP \)
- If consensus is reached after a finite number of steps \(n \), then
 \[
 \bar{V}(a, [P := \Diamond P]^*(EP \rightarrow UP)) = 1.
 \]
- However, the other doesn’t quite work
- Moreover, it does not guarantees convergence to a consensus

Theorem

Given a network model \(\mathcal{M} \). Then, a consensus is reached in \(\mathcal{M} \) under the DeGroot dynamics (i.e., successive updates with \([P := \Diamond P] \)), if and only if, the formula

\[
[P := \Diamond P]^*\langle P := \Diamond P \rangle^*(EP \rightarrow UP)
\]

is valid in \(\mathcal{M} \).

The proof uses that:

\[
\liminf_{n \to \infty} \bar{V}(a, [P := \Diamond P]^n(EP \rightarrow UP)) = \\
\]

properties in the limit can be expressed as:

\[
[P := \Diamond P]^*\langle P := \Diamond P \rangle^* \varphi
\]
Formalizing DeGroot’s model

- The agents are in a consensus: \(EP \rightarrow UP \)
- If consensus is reached after a finite number of steps \(n \), then
 \[
 \bar{V}(a, [P := \Diamond P]^*(EP \rightarrow UP)) = 1.
 \]
- However, the other doesn’t quite work
- Moreover, it does not guarantees convergence to a consensus

Theorem

Given a network model \(\mathcal{M} \). Then, a consensus is reached in \(\mathcal{M} \) under the DeGroot dynamics (i.e. successive updates with \([P := \Diamond P] \)), if and only if, the formula

\[
[P := \Diamond P]^*\langle P := \Diamond P \rangle^*(EP \rightarrow UP)
\]

is valid in \(\mathcal{M} \). The proof uses that:

\[
\bar{V}(a, [P := \Diamond P]^*\langle P := \Diamond P \rangle^*(EP \rightarrow UP)) = \lim \inf_{n \rightarrow \infty} \bar{V}(a, [P := \Diamond P]^n(EP \rightarrow UP))
\]

- properties in the limit can be expressed as: \([P := \Diamond P]^*\langle P := \Diamond P \rangle^* \phi \)
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
Outline

- DeGroot and Lehrer’s model of opinion dynamics
- A fuzzy hybrid logic
- Reasoning about opinion dynamics in social networks
- Concluding remarks and future research
Concluding remarks and future research

Conclusions

- Modal logic is suited for reasoning about simple social network dynamics
- More complex dynamics such as DeGroot's can also be captured in proper extensions of modal logic

MY QUEST:
LOGICAL METHODS FOR SOCIAL NETWORK ANALYSIS

Future research

- Develop a proof theory or decision procedure for the logic
- Compare to probabilistic logics
- Compare to logics for Markov chains etc.
Concluding remarks and future research

Conclusions

- Modal logic is suited for reasoning about simple social network dynamics

- More complex dynamics such as DeGroot's can also be captured in proper extensions of modal logic

MY QUEST:

LOGICAL METHODS FOR SOCIAL NETWORK ANALYSIS

Future research

- Develop a proof theory or decision procedure for the logic

- Compare to probabilistic logics

- Compare to logics for Markov chains etc.
Concluding remarks and future research

Conclusions

- Modal logic is suited for reasoning about simple social network dynamics

- More complex dynamics such as DeGroot's can also be captured in proper extensions of modal logic

- **MY QUEST:**
 LOGICAL METHODS FOR SOCIAL NETWORK ANALYSIS

Future research

- Develop a proof theory or decision procedure for the logic

- Compare to probabilistic logics

- Compare to logics for Markov chains etc.